NGC 1952 - M1 - NEBULOSA DEL CANGREJO

Observatorio La Foyaca    Lx200 Gps  reductora 6,3  Canon 350D

La Nebulosa del Cangrejo es el más visible y famoso resto de supernova conocido, una nube de gas creado por la explosión de una estrella como supernova.


La supernova fue registrada el 4 de Julio de 1054 D.C por astrónomos chinos, y era cuatro veces más brillante que Venus, o aproximadamente magnitud -6. De acuerdo con los registros, fue visible a la luz del día durante 23 días, y 653 días a simple vista en el cielo nocturno. También fue probablemente registrado por los artistas indios Anasazi (hoy día en Arizona y Nuevo México), como indican los descubrimientos en el Cañón Navaho y en White Mesa (ambos en Arizona) así como en el Parque Nacional del Cañón Chaco (Nuevo México). Además de esto, Ralph R. Robbins de la Universidad de Texas ha encontrado arte de los indios Mimbres en Nuevo México, posiblemente describiendo una supernova.

La supernova de 1054 también tuvo asignada la designación de estrella variable CM Tauri. Esta es una de las pocas supernovas observadas a lo largo de la historia en nuestra Galaxia de la Vía Láctea.

 
Los restos de la nebulosa fueron descubiertos por John Bevis en 1731, quien lo añadió a su atlas del cielo, Uranographia Britannica. Charles Messier la encontró de forma independiente el 28 de Agosto de 1758, cuando estaba buscando el cometa Halley en su primer retorno pronosticado, y en principio pensó que era el cometa. Por supuesto, pronto reconoció que no tenía el movimiento propio aparente, y lo catalogó el 12 de Septiembre de 1758. Fue el descubrimiento de este objeto el que llevó a Charles Messier a comenzar la compilación de este catálogo. También fue el descubrimiento de este objeto, el cual tenía un gran parecido con un cometa (1758 De la Nux, C/1758 K1) en su pequeño telescopio refractor, lo que le trajo la idea de buscar cometas con telescopios (vea esta nota. Messier reconoció el descubrimiento original de Bevis cuando tuvo conocimiento del mismo en una carta del 10 de Junio de 1771.

 
Aunque el catálogo de Messier fue ante todo compilado para prevenir confusiones de estos objetos con cometas, M 1 fue de nuevo confundido con el cometa Halley con la ocasión del segundo retorno pronosticado en 1835.


Esta nebulosa fue bautizada como “Nebulosa del Cangrejo” como motivo de un dibujo realizado por Lord Rosse en 1844. De los primeros observadores Messier, Bode y William Herschel comentaron de forma correcta que esta nebulosa no era posible resolverla en estrellas, pero William Herschel pensó que era un sistema estelar el cual podría resolverse con telescopios mayores. John Herschel y Lord Rosse, erróneamente, pensaron que era 'dificilmente resoluble' en estrellas. Ellos y otros, incluyendo a Lassell en los 1850s, al parecer confundieron estructuras filamentosas como indicación de resolubilidad.

 

Las primeras observaciones espectroscópicas, por ejemplo por Winlock, revelaron la naturaleza gaseosa de este objeto a finales del siglo XIX. La primera fotografía se obtuvo en 1892 con un telescopio de 50 centímetros. Las primeras investigaciones serias de su espectro se llevaron a cabo en 1913 - 15 por Vesto Slipher; que encontró que las líneas de emisión espectral tenían divisiones; más tarde se reconoció que la verdadera razón para esto era el desplazamiento Doppler, debido a que partes de la nebulosa se estaban acercando a nosotros (las líneas estaban desplazadas al azul) y otras alejándose (líneas desplazadas al rojo). Heber D. Curtis, en su descripción de este objeto basada en las fotografías del Observatorio Lick, la clasificó de forma dudosa como una nebulosa planetaria (Curtis 1918), una visión que solo fue refutada en 1933; esta clasificación incorrecta aún puede encontrarse en muchos manuales  modernos.

 
En 1921, C.O. Lampland del Observatorio Lowell comparando las excelentes fotografías de la nebulosa obtenidas con el reflector de 105 centímetros, encontró movimientos y cambios notables, también en brillo, de componentes individuales de la nebulosa, incluyendo cambios dramáticos en algunas pequeñas regiones cerca del par central de estrellas (Lampland 1921). El mismo año, J.C. Duncan del Observatorio del Monte Wilson comparó placas fotográficas tomadas con una diferencia de 11,5 años, y encontró que la Nebulosa del Cangrejo se expandía a una media de 0,2 segundos por año; el rastreo de este movimiento mostró que la expansión debió comenzar hace 900 años (Duncan 1921). También el mismo año, Knut Lundmark contrastó la proximidad de la nebulosa con la supernova de 1054 (Lundmark 1921).

En 1942, basándose en investigaciones realizadas con el telescopio Hooker de 250 centímetros del Monte Wilson, Walter Baade calculó una cifra más exacta de 760 años desde la expansión, lo cual nos da una fecha alrededor de 1180 (Baade 1942); más tarde las investigaciones mejoraron este valor a aproximadamente 1140. El acontecimiento de la supernova de 1054 muestra que la expansión ha debido ser acelerada.

 

La nebulosa consta del material eyectado por la explosión de la supernova, el cual ha sido dispersado en un volumen aproximado de 10 años luz de diámetro, y aún continúa expandiéndose a la considerable velocidad de 1 800 km/sec. La luz que emite fue analizada dos mediante principales contribuciones, la primera por Roscoe Frank Sanford en 1919 basada en investigaciones espectroscópicas (Sanford 1919, confirmadas fotográficamente por Walter Baade y Rudolph Minkowski en 1930: Primero, un componente rojizo que formaba una caótica red de brillantes filamentos, el cual tenía un espectro de líneas de emisión (incluyendo las líneas de hidrógeno) similares a las nebulosas de gas difuso (o planetarias). El segundo es un fondo difuso azulado el cual tiene un espectro continuo y consiste en radiación sincrotrónica de alta polarización, que es emitido por electrones de alta energía (movimiento rápido) en un potente campo magnético, la primera explicación para esto la propuso en astrónomo soviético J. Shklovsky (1953) y respaldado por las observaciones de Jan H. Oort and T. Walraven (1956). La radiación sincrotrónica también está presente en otros procesos “explosivos” en el cosmos, por ejemplo en el núcleo activo de la galaxia irregular M 82 y en el peculiar chorro de la galaxia elíptica gigante M 87. Estas impactantes propiedades de la Nebulosa del Cangrejo en la luz visible son igualmente evidentes en las imágenes post-procesadas por David Malin del Observatorio Anglo-Australiano, y la imagen de Paul Scowen obtenida en el Monte Palomar.

 
En 1948, se identificó la Nebulosa del Cangrejo como una poderosa fuente de radiación, nombrada y listada como Taurus A y más tarde como 3C 144. Los rayos X de este objeto fueron detectados en Abril de 1963 con un cohete de gran altitud de tipo Aerobee con un detector de rayos X desarrollado por el Laboratorio de Investigación Naval; la fuente de rayos X se llamó Taurus X-1. Las medidas durante la ocultación lunar de la Nebulosa del Cangrejo el 5 de Julio de 1964, y las repeticiones en 1974 y 1975, demostraron que los rayos X provenían de una región de al menos 2 minutos de arco de tamaño, y que la energía emitida en rayos X por la Nebulosa del Cangrejo era 100 veces mayor que la emitida en la luz visible. Sin embargo, incluso la luminosidad de la nebulosa en la luz visible es enorme: a una distancia de 6 300 años luz (distancia bastante bien determinada por Virginia Trimble (1973)), su brillo aparente corresponde a una magnitud absoluta de -3,2, o más de 1 000 veces la luminosidad solar. Esta luminosidad global en todos los rangos del espectro fue estimada en ¡100 000 luminosidades solares o 5*10^38 ergios/s!.

 
El 9 de Noviembre de 1968, se descubrió una fuente de radio pulsante, el Pulsar del Cangrejo (también catalogado como NP0532, 'NP' por NRAO Pulsar, o PSR 0531+21), en M 1 por los astrónomos del Observatorio de Arecibo con el radio telescopio de 300 metros de Puerto Rico. Esta estrella es la derecha (sur-oeste) del par visible cerca del centro de la nebulosa en nuestra imagen. Este pulsar fue el primero en ser verificado en la parte óptica del espectro, cuando W.J. Cocke, M.J. Disney y D.J. Taylor del Observatorio Steward, en Tucson, Arizona encontraron destellos con el mismo periodo de 33,085 milisegundos del pulsar de radio gracias al telescopio de 90 centímetros del Pico Kitt; este descubrimiento se realizó el 15 de Enero de 1969 a las 9:30 pm hora local (16 de Enero de 1969, 3:30 UT, de acuerdo con Simon Mitton). A este pulsar óptico a veces se le llama por la designación de estrella variable de la supernova, CM Tauri.

 
Se ha establecido que este pulsar es una estrella de neutrones de rotación rápida: ¡rota a una velocidad de cerca de 30 veces por segundo!. Este periodo ha sido muy bien investigado debido a que la estrella de neutrones emite pulsos en virtualmente todas las partes del espectro electromagnético, desde un 'punto caliente' en su superficie. La estrella de neutrones es un objeto extremadamente denso, más denso que el núcleo de un átomo, concentrando más de la masa solar en un volumen de 30 kilómetros. Su rotación está decelerando lentamente debido a la interacción magnética con la nebulosa; esta es ahora una principal fuente de energía que hace que la nebulosa brille; como dijimos previamente, esta fuente de energía es 100 000 más energética que el Sol.

 
En la luz visible, el pulsar tiene una magnitud aparente de 16. Esto significa que esta diminuta estrella está aproximadamente en una magnitud absoluta de +4,5, ¡lo que es la misma luminosidad que nuestro Sol en la parte visible del espectro!

Jeff Hester y Paul Scowen han usado el Telescopio Espacial Hubble para investigar la Nebulosa del Cangrejo M 1 (ver también por ejemplo Sky & Telescope de Enero de 1995, página 40). Sus constantes investigaciones con el HST han provisto de una nueva visión de la dinámica y cambios de la Nebulosa y Pulsar del Cangrejo. Más recientemente se ha investigado el Corazón del Cangrejo por los astrónomos del HST.

 
Este objeto ha atraído tanto interés que a los astrónomos se les puede dividir en dos grupos del mismo tamaño aproximado: Los que trabajan en la Nebulosa el Cangrejo y los que no. Se celebró un “Simposio de la Nebulosa del Cangrejo' en Flagstaff, Arizona en Junio de 1969 (ver PASP Vol. 82, Mayo de 1970 para los resultados - Burnham). El simposio IAU No. 46, tuvo lugar en Jodrell Bank (Inglaterra) en Agosto de 1970 estuvo exclusivamente dedicado a este objeto. Simon Mitton escribió un gran libro en 1978 acerca de la Nebulosa del Cangrejo M 1, el cual aún es más interesante e informativo (es también fuente de alguna de la información incluida aquí).

 
La Nebulosa del Cangrejo puede encontrarse con bastante facilidad a partir de Zeta Tauri (o 123 Tauri), el 'Cuerno Sur' del Toro, una estrella de tercera magnitud la cual puede encontrarse fácilmente al Este-Noreste de Aldebarán (Alfa Tauri). M 1 se encuentra más o menos a 1 grado Norte y 1 grado Oeste de Zeta, ligeramente al sur y aproximadamente medio grado al Oeste de la estrella de magnitud 6, Struve 742


La nebulosa puede verse bien bajo un cielo oscuro y despejado, pero puede ser igualmente fácil perderla con el fondo de la iluminación en condiciones menos favorables. M 1 es visible como una mancha tenue con unos binoculares 7x50 o 10x50. Con un poco más de aumento, puede verse como una mancha nebulosa ovalada, rodeada por un halo. En telescopios a partir de 10 centímetros de apertura, comienzan a aparecer algunos detalles de su forma, con algunos indicios de estructuras de puntos o rayas en la zona central de la nebulosa; John Mallas informa que bajo condiciones excelentes, un observador experto puede ver a través de la porción interior de la nebulosa. Los aficionados pueden comprobar la impresión de Messier de que M 1 efectivamente parece un débil comenta sin cola en pequeños instrumentos. Solo bajo excelentes condiciones y con mayores telescopios, a partir de 40 centímetros de apertura, empiezan a hacerse visibles los filamentos estructuras finas.

 
Como la Nebulosa del Cangrejo se sitúa solo a 1 grado y medio de la eclíptica, existen frecuentes conjunciones y ocasionales tránsitos de planetas, así como ocultaciones por parte de la Luna (algunas de las mismas mencionadas más arriba).

 
M 1 se sitúa en un bonito campo de la Vía Láctea. La estrella Zeta Tauri es tan extraordinaria como la estrella de tipo variable Gamma Cassiopeiae, una estrella giratoria bastante rápida con un espectro del tipo B4 III pe la cual ha eyectado una cubierta de gas expansivo, y tiene una débil estrella compañera espectroscópica en una órbita de aproximadamente 133 días de periodo. Precediendo a M 1 dos minutos (o medio grado) en Ascensión Recta se encuentra Struve 742 o ADS 4200, otra estrella binaria con componentes A (mag 7,2, espectro F8, de color amarillo) y B (mag 7,8, blanca) separadas por más o menos 3,6' en la posición de ángulo 272 grados, y orbitando cada una a la otra cada 3 000 años.

 

                        La Nebulosa del Cangrejo (también conocida como M1, NGC 1952, Taurus A y Taurus X-1) es un resto de supernova de tipo plerión resultante de la explosión de una supernova en 1054 (SN 1054). La nebulosa fue observada por vez primera en 1731 por John Bevis. Es el resto de una supernova que fue observada y documentada, como una estrella visible a la luz del día, por astrónomos chinos y árabes el 4 de julio del año 1054. La explosión se mantuvo visible durante 22 meses. Con este objeto, Charles Messier comenzó su catálogo de objetos no cometarios. Situado a una distancia de aproximadamente 6.300 años luz (1.930 pc) de la Tierra, en la constelación de Tauro, la nebulosa tiene un diámetro de 6 años luz (1,84 pc) y su velocidad de expansión es de 1.500 km/s.

                        El centro de la nebulosa contiene un púlsar, denominado PSR0531+121, que gira sobre sí mismo a 30 revoluciones por segundo, emitiendo también pulsos de radiación que van desde los rayos gamma a las ondas de radio. El descubrimiento de la nebulosa produjo la primera evidencia que concluye que las explosiones de supernova producen pulsares.

                        La nebulosa sirve como una fuente de radiación útil para estudiar cuerpos celestes que la ocultan. En las décadas de 1950 y 1960, la corona solar fue cartografiada gracias a la observación de las ondas de radio producidas por la Nebulosa del Cangrejo que pasaban a través del Sol. Más recientemente, el espesor de la atmósfera de Titán, satélite de Saturno, fue medido conforme bloqueaba los rayos X producidos por la nebulosa.

 

 

Orígenes

 

                        La Nebulosa del Cangrejo fue observada por primera vez en 1731 por John Bevis y redescubierta independientemente en 1758 por Charles Messier mientras observaba el paso de un cometa brillante. Messier la catalogó como la primera entrada de su catálogo de objetos celestes no cometarios, llamado hoy en día Catálogo Messier. William Parsons, tercer conde de Rosse, observó la nebulosa en el Castillo de Birr en la década de 1840, refiriéndose al objeto como la Nebulosa del Cangrejo, dado que un dibujo que realizó de ésta se asemejaba a un cangrejo.

                        Al inicio del siglo XX, el análisis de las primeras fotografías de la nebulosa tomadas durante el transcurso de varios años revelaron que la nebulosa se expandía. Determinando el origen de la expansión se dedujo que la nebulosa se debía haber formado unos 900 años atrás. Existen documentos históricos que revelan que una nueva estrella suficientemente brillante como para ser visible a la luz del día fue observada en la misma región del cielo por astrónomos chinos y árabes en 1054. Es posible que la "nueva estrella" brillante fuera observada por los anasazi y registrada en petroglifos. Dada su gran distancia y su carácter efímero, esta "nueva estrella" observada por chinos y árabes sólo pudo haber sido una supernova, una enorme estrella en plena explosión, que una vez ha agotado su fuente de energía por medio de fusión nuclear, se colapsa sobre sí misma.                   

                        Análisis recientes de estos documentos históricos han encontrado que la supernova que creó la Nebulosa del Cangrejo probablemente ocurrió en abril o principios de mayo de 1054, alcanzando su máximo brillo con una magnitud aparente entre −7 y −4,5 en julio, siendo más brillante que cualquier otro objeto celeste en la noche exceptuando la Luna.                        La supernova fue visible a simple vista aproximadamente durante dos años después de su primera observación. Gracias a las observaciones escritas de los astrónomos del Extremo Oriente y Oriente Medio en 1054, la Nebulosa del Cangrejo se convirtió en el primer objeto astronómico donde se pudo reconocer una relación con una explosión de supernova.cite_note-Mayall-5

 

Características físicas

 

                        En luz visible, la Nebulosa del Cangrejo consiste de una amplia masa de filamentos de forma ovalada, de aproximadamente 6 arcominutos de longitud y una anchura de 4 arcominutos, rodeando una región central de azul difuso (en comparación, la Luna llena cubre 30 arcominutos). Los filamentos son los restos de la atmósfera de la estrella progenitora, y están constituidos principalmente de helio e hidrógeno ionizado, junto con carbón, oxígeno, nitrógeno, hierro, neón y azufre. La temperatura de los filamentos está comprendida entre los 11.000 y los 18.000 K, y su densidad está en torno a las 1.300 partículas por cm³.

                        En 1953, Iósif Shklovsky propuso la idea según la cual la región azul difusa está principalmente producida por radiación sincrotón, que es la radiación electromagnética generada por los electrones que viajan en trayectorias curvilíneas a velocidades que alcanzan la mitad de la velocidad de la luz. Tres años más tarde, la hipótesis fue confirmada por medio de observaciones. En la década de 1960 se descubrió que la causa de las trayectorias curvilíneas de los electrones es el fuerte campo magnético producido por una estrella de neutrones ubicada en el centro de la nebulosa.

                        La Nebulosa del Cangrejo es un ejemplo típico de resto de supernova de tipo pleriónico. Un plerión se caracteriza porque su energía procede de la rotación del púlsar y no del material arrojado al medio interestelar durante la explosión de la supernova.

                        La Nebulosa del Cangrejo se expande a una velocidad de 1.500 km/s, medida por el efecto Doppler del espectro de la nebulosa. Por otro lado, las imágenes tomadas con varios años de diferencia muestran la lenta expansión angular aparente en el cielo. Comparando esta expansión angular con la velocidad de expansión determinada por espectroscopía (corrimiento al rojo) se pudo estimar la distancia de la nebulosa respecto el Sol, obteniendo una distancia de aproximadamente 6.300 años luz, y un tamaño de alrededor de 11 años luz para la nebulosa.                   

                        Rastreando el origen de la expansión consistentemente, y utilizando su velocidad como se observa hoy en día, es posible determinar la fecha de la formación de la nebulosa, es decir, la fecha de la explosión de la supernova. Haciendo este cálculo se obtiene una fecha que corresponde a varias décadas después del año 1054. Una explicación plausible de este desfase sería que la velocidad de expansión no ha sido uniforme, sino que se ha acelerado después de la explosión de la supernova. Esta aceleración sería debida a la energía del pulsar que alimentaría el campo magnético de la nebulosa, la cual se expande y empuja a los filamentos de la nebulosa hacia el exterior.

                        Los cálculos de la masa total de la nebulosa permiten estimar la masa de la estrella progenitora de la supernova. Las estimaciones de la cantidad de materia contenida en los filamentos de la Nebulosa del Cangrejo varían entre una y cinco masas solares; aunque otras estimaciones basadas en investigaciones del Pulsar del Cangrejo ofrecen valores diferentes.

 

 

Estrella central

 

                        En el centro de la Nebulosa del Cangrejo se encuentran en apariencia dos estrellas poco brillantes, una de las cuales es la estrella responsable de la existencia de la nebulosa. Ésta se identificó en 1942, cuando Rudolf Minkowski descubrió que su espectro óptico era extremadamente inusual y no se parecía al de una estrella normal. En 1949, se descubrió que la región alrededor de la estrella era una gran fuente de ondas de radio y en 1963 se descubrió que también lo era de rayos X, y fue identificado como uno de los objetos celestes más brillantes en rayos gamma en 1967. Luego, en 1968, se descubrió que la estrella emitía su radiación en pulsos rápidos, convirtiéndose en uno de los primeros pulsares en ser identificado, y el primero en estar asociado a un resto de supernova.

                        Los pulsares son fuentes de potentes radiaciones electromagnéticas emitidas en breves y constantes pulsos muchas veces por segundo. Fueron un gran misterio cuando se descubrieron en 1967, y el equipo que identificó el primero consideró la posibilidad de que podía ser una señal de una civilización avanzada. No obstante, el descubrimiento de una fuente de radio pulsante en el centro de la Nebulosa del Cangrejo fue una fuerte evidencia de que los pulsares no eran señales de extraterrestres sino que se formaban a partir de explosiones de supernovas. Hoy en día se sabe que son estrellas de neutrones de rápida rotación cuyos potentes campos magnéticos concentran sus emisiones de radiación en rayos estrechos. El eje del campo magnético no está alineado con el de su rotación, la dirección del haz barre el cielo siguiendo un círculo. Cuando, por azar la dirección de un haz cruza la de la Tierra, el pulso es observado. Así, la frecuencia de los pulsos es una medida de velocidad de rotación de la estrella de neutrones.

                        El pulsar del Cangrejo tiene un diámetro estimado comprendido entre 28 y 30 kilómetros; emite pulsos de radiación cada 33 milisegundos. Los pulsos son emitidos en longitudes de onda dentro del espectro electromagnético, desde ondas de radio hasta rayos X. Como todos los pulsares aislados, la frecuencia de los pulsos disminuye de forma regular muy ligeramente, indicando que el pulsar se desacelera gradualmente. Sin embargo, ocasionalmente, su periodo de rotación muestra cambios drásticos, llamados 'interferencias', que se cree que son causados por repentinos reajustes en la estructura interna de la estrella de neutrones. La energía liberada a medida que el pulsar se desacelera es enorme, y provoca la emisión de radiación sincrotrón de la Nebulosa del Cangrejo, la cual tiene una luminosidad total 75.000 veces mayor que la del Sol.

                        La enorme energía emitida por el pulsar crea una región particularmente dinámica en el centro de la Nebulosa del Cangrejo. Si bien la mayoría de los objetos astronómicos evolucionan tan lentamente que los cambios son visibles únicamente en escalas de tiempo de muchos años, las partes centrales de la Nebulosa del Cangrejo muestran cambios en escalas de tiempo de apenas unos pocos días. La parte más dinámica en la zona central de la nebulosa es el punto donde el viento ecuatorial del pulsar choca contra la materia circundante de la nebulosa, formando una onda de choque. La forma y la posición de esta zona cambia rápidamente, con el viento ecuatorial que se comporta como una serie de remolinos que se acentúan, brillan y después se atenúan a medida que se alejan del pulsar muy lejos dentro el cuerpo principal de la nebulosa.

 

 

 

Estrella progenitora

 

                        La estrella que se convirtió en supernova y dio origen a la Nebulosa del Cangrejo mediante su explosión es la llamada estrella progenitora.

                        Los modelos teóricos de explosiones de supernovas sugieren que la estrella progenitora que creo la Nebulosa del Cangrejo debió haber tenido una masa de entre ocho y doce masas solares. Las estrellas con una masa inferior a ocho masas solares son consideradas demasiado ligeras como para producir explosiones de supernova, y finalizan su vida produciendo una nebulosa planetaria, mientras que aquellas mayores de doce masas solares producen una nebulosa con una composición química distinta a la observada en el seno de la Nebulosa del Cangrejo.

                        Uno de los principales problemas provocados por el estudio de la Nebulosa del Cangrejo es que la masa combinada de la nebulosa y el pulsar suman considerablemente menos que la masa estimada de la estrella progenitora, siendo una incógnita por resolver la diferencia entre estas dos masas. Para estimar la masa de la nebulosa se mide la cantidad total de luz emitida, dada la temperatura y la densidad de la nebulosa, y se deduce la masa requerida para emitir la luz observada. Las estimaciones oscilan entre 1 y 5 masas solares, siendo el valor generalmente aceptado de 2 ó 3 masas solares. Se estima que la masa de la estrella de neutrones estaría comprendida entre 1,4 y 2 masas solares.

                        La teoría predominante que trata de explicar la masa faltante de la nebulosa considera que una proporción considerable de la masa de la estrella progenitora fue eyectada por un rápido viento estelar antes de la explosión de supernova, como es el caso de numerosas estrellas masivas como las estrellas de Wolf-Rayet. Sin embargo, un viento así habría creado un cascarón alrededor de la nebulosa. Aunque se han llevado a cabo varios intentos para observar el supuesto cascarón usando diferentes longitudes de onda, nadie ha logrado encontrarlo.

 

 

 

 

Tránsito por los cuerpos del Sistema Solar

 

                        La Nebulosa del Cangrejo se encuentra aproximadamente a 1,5° de la eclíptica—el plano que contiene la órbita de la Tierra alrededor del Sol. Esto significa que la Luna — y ocasionalmente, los planetas — pueden transitar u ocultar la nebulosa. Aunque el Sol no transita la nebulosa, su corona pasa enfrente de ésta. Estos tránsitos y ocultaciones pueden usarse para analizar tanto la nebulosa como el objeto que pasa enfrente de ella, observando cómo la radiación de la nebulosa es alterada por el cuerpo en tránsito.

                        Los tránsitos lunares se han usado para trazar un mapa de las emisiones de rayos X de la nebulosa. Antes del lanzamiento de satélites dedicados a la observación de rayos X, como el XMM-Newton o el Observatorio de rayos X Chandra, los telescopios de observación en rayos X generalmente tenían muy poca resolución óptica. Inversamente, la posición de la Luna es conocida con mucha precisión. Así, cuando ésta pasa enfrente de la nebulosa, las variaciones en el brillo de la nebulosa pueden usarse para crear mapas de emisiones de rayos X. Cuando los rayos X fueron observados por primera vez desde la nebulosa, una ocultación lunar fue usada para determinar la posición exacta de su origen.

                        La corona solar pasa enfrente de la Nebulosa del Cangrejo cada mes de junio. Las variaciones en las ondas de radio recibidas desde la Nebulosa del Cangrejo en ese momento pueden usarse para deducir detalles sobre la densidad y estructura de la corona. Las primeras observaciones establecieron que la corona se extendía a distancias más grandes de lo que se había pensado anteriormente; las observaciones posteriores descubrieron que la corona presentaba variaciones considerables de densidad.

                        Muy raramente, Saturno transita la Nebulosa del Cangrejo. Su último tránsito, en 2003, fue el primero desde 1296; no ocurrirá otro hasta 2267. Los científicos usaron el Observatorio de rayos X Chandra para observar la luna de Saturno Titán durante su tránsito enfrente de la nebulosa, y descubrieron que la 'sombra' de rayos X de Titán era mayor que su superficie sólida, debido a la absorción de rayos X por su atmósfera. Estas observaciones pudieron establecer que el grosor de la atmósfera de Titán es de 880 km.            

     El tránsito del planeta Saturno propiamente no pudo observarse, porque el telescopio Chandra estaba pasando a través de los cinturones de Van Allen en ese momento.